An augmented Lagrangian multi-scale dictionary learning algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An augmented Lagrangian approach to general dictionary learning for image denoising

This paper presents an augmented Lagrangian (AL) based method for designing of overcomplete dictionaries for sparse representation with general lq-data fidelity term (q 6 2). In the proposed method, the dictionary is updated via a simple gradient descent method after each inner minimization step of the AL scheme. Besides, a modified Iterated Shrinkage/Thresholding Algorithm is employed to accel...

متن کامل

Multi-Scale Saliency Detection using Dictionary Learning

Saliency detection has drawn a lot of attention of researchers in various fields over the past several years. Saliency is the perceptual quality that makes an object, person to draw the attention of humans at the very sight. Salient object detection in an image has been used centrally in many computational photography and computer vision applications like video compression [1], object recogniti...

متن کامل

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

We propose a general and efficient algorithm for learning low-rank matrices. The proposed algorithm converges super-linearly and can keep the matrix to be learned in a compact factorized representation without the need of specifying the rank beforehand. Moreover, we show that the framework can be easily generalized to the problem of learning multiple matrices and general spectral regularization...

متن کامل

An adaptive augmented Lagrangian method for large-scale constrained optimization

We propose an augmented Lagrangian algorithm for solving large-scale constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the core augment...

متن کامل

An Augmented Lagrangian Based Algorithm for Distributed NonConvex Optimization

This paper is about distributed derivative-based algorithms for solving optimization problems with a separable (potentially nonconvex) objective function and coupled affine constraints. A parallelizable method is proposed that combines ideas from the fields of sequential quadratic programming and augmented Lagrangian algorithms. The method negotiates shared dual variables that may be interprete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EURASIP Journal on Advances in Signal Processing

سال: 2011

ISSN: 1687-6180

DOI: 10.1186/1687-6180-2011-58